Skip to main content

In Pursuit

Cures for diseases. Technologies that create new markets. Interventions to help communities thrive. UNC-Chapel Hill is at the forefront of discoveries that benefit our state and improve society at large. Follow our researchers as they go “in pursuit” of solutions to the worldʼs most pressing challenges.


Map: NC House districts

The Difficulties of Ensuring “One Person, One Vote”

North Carolina’s General Assembly passed new legislative maps on November 6, and there’s already a lawsuit about them. Why are we redistricting, what role does the census play, and how is Carolina Demography educating people about the process?


Image: A multicolored radar map shows Hurricane Ida looming over New Orleans.

Levees Improved by UNC Researcher Succeed Against Hurricane Ida

On Sunday August 29th, Hurricane Ida made landfall in New Orleans as a Category 4 hurricane, but thanks to the work of UNC researcher Rick Luettich and others, the levees held and water damage was greatly minimized.

ADCIRC is a computer program co-developed by Luettich and researchers from the UNC Institute of Marine Sciences, Coastal Resilience Center for Excellence, and the Renaissance Computing Institute. It helps determine what coastal oceans will do when a big storm comes. Luettich said these predictions can inform us of what hazards coastal areas will face going forward and how we can better prepare for them.

Sixteen years ago, New Orleans was devastated when Hurricane Katrina resulted in the deaths of 1,833 people. The majority of those deaths were attributed to flooding that resulted from the failure of the city’s levee system. While hurricanes are rated from Category 1 to Category 5 on a scale of wind speed, Luettich said storm surge and flooding is where most of the damage comes from.

Image: A multicolored radar map shows Hurricane Ida looming over New Orleans.

“Right after Katrina, a massive forensic study led by the Army Corps of Engineers was conducted to recreate the conditions under which the levees failed,” Luettich said. “We helped the study team use ADCIRC to go back and determine the storm surge conditions that led to the failures and how high the levees needed to be to protect the city from future storms.”

Luettich’s contributions did not end after he made recommendations for the new levees.  In 2012 he was appointed by the Governor of Louisiana as a Commissioner on the Southeast Louisiana Flood Protection Authority which oversees the protection system lying east of the Mississippi River. He served on this board until 2019, helping to lead the reorganization of the Authority to improve efficiency and minimize the potential for failures across the system.

“The greater New Orleans area is comprised of three parishes,” Luettich said. “At the time of Katrina, each parish operated its own levy district. The problem with that is they weren’t all self-contained units from a flooding standpoint, so if one parish didn’t live up to its responsibility there was a weak link in the chain and water could overtop the levees.”

Luettich’s expertise in storm surge and flooding meant he brought a strong, scientific perspective and motivation to guide the consolidation of the levee systems into a single cohesive organizational system.

As Ida was approaching New Orleans, Luettich’s ADCIRC program was busy running predictions to determine whether the storm surge would overtop the new levees. As his models predicted, the storm did not bring the same intensity in flooding as Katrina, but it did serve as an important test.

“Before the levees can pass a Katrina test they needed to pass an Ida test,” Luettich said. “And an Ida test wasn’t small potatoes, but the new system, both the infrastructure and the organization required to maintain and operate it, seemed to pass in flying colors.”

The work Luettich does in New Orleans allows him to bring new knowledge and expertise back to North Carolina, where he conducts most of his research with the Institute of Marine Sciences.

“There’s a whole lot of people that want to live in coastal areas and many of them are subject to the ever-increasing threat of flooding due to our changing climate,” Luettich said. “Until people decide that they’re not going to live in these hazardous areas anymore, somebody needs to be thinking about how to quantify and understand the hazard so we can live with them as effectively as possible. That’s a lot of what coastal resilience really is.”

Rick Luettich is director of the UNC Institute of Marine Sciences and lead principal investigator of the Coastal Resilience Center of Excellence. He is an Alumni Distinguished Professor with academic appointments in the Department of Earth, Marine and Environmental Sciences within the UNC College of Arts & Sciences and in the Department of Environmental Sciences and Engineering within the UNC Gillings School of Global Public Health.

Three students wearing masks and green “Pantry Patrol” t-shirts examine paperwork behind a bin of potatoes in a warehouse.

UNC Helps High School Students Win National STEM Competition and Fight Hunger

With a passion for technology, a drive to make a real-world impact in their community, and some help from UNC-Chapel Hill researchers, three local high school students created Pantry Patrol, a user-friendly application designed to help food pantries better combat hunger.

Photo: A woman wearing a white lab coat, glasses, black gloves, and a ponytail stands at a counter in a laboratory. She is using a large touch screen on a black device seated next to a metal cylinder covered in guages, switches, and tubes. Another woman in a white lab coat works in the background.

Improving the Lab-to-Market Pipeline at UNC

North Carolina’s abundance of research universities and the Research Triangle Park has made it a powerhouse in biopharmaceutical manufacturing. Regional participation in the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), builds upon that asset, bringing jobs to the area and strengthening the research-to-market pipeline.

two health care workers wear masks and face shields while conducting a study on COVID-19

COVID-19 Impacts on Health Care Worker Mental Health

During the pandemic, a majority of health care workers have experienced stress, anxiety, frustration, exhaustion, and burnout. In response, two researchers from the UNC School of Medicine have teamed up to assess how COVID-19 has affected the mental health of this population.

Photo: Male student studies at home during quarantine. Close up of a table with laptop, notebooks and medical mask.

Pandemic Worsens Depression, Anxiety Among First-Year College Students

After surveying 419 first-year college students about their mental health before and after the pandemic began, UNC researchers discovered that the prevalence of moderate to severe anxiety among this group increased by 40 percent, and moderate to severe depression increased by 48 percent.

UNC Researchers Prepare for Next Pandemic

For decades, scientists warned of the potential for a global coronavirus outbreak. But when SARS-CoV-2 emerged, no therapeutics, drugs, or vaccines were readily available. The Rapidly Emerging Antiviral Drug Development Initiative (READDI) — founded by researchers at UNC and the Structural Genomics Consortium — is not only finding solutions to the COVID-19 pandemic, but also drugs and therapeutics for future viral outbreaks.

Algal Blooms Pose Possible Respiratory Threat

Toxic blue-green algae has long proven to be harmful to the environment, human and animal health. While many studies examine the effects of ingestion or skin contact, PhD student Haley Plaas looks at a different angle: aerosol.

a black father talks with his son

Black Families Use “The Talk” to Help Their Children Cope with Racism

UNC psychologist Shauna Cooper focuses on understanding the impacts of discrimination and how Black families help their children cope and promote positive development.

Jacqueline Lawton

Through Theatre, UNC Playwright Shines Spotlight on Underrepresented Communities

In response to the killings of George Floyd and Breonna Taylor and the #SayHerName campaign, UNC playwright Jacqueline Lawton is helping to organize a series of plays and monologues to bring awareness to the names and stories of Black women and girls who have been victims of police violence.

an overhead map view of a hurricane headed for the eastern seaboard

2020 Hurricane Season May Include Up to 19 Storms

June 1 marked the start of the 2020 hurricane season — and it’s slated to be an active one. In this Q&A, UNC researcher Rick Luettich talks about this year’s above-average hurricane forecast, the impact these storms have on inland populations, and how COVID-19 may affect vulnerable communities.

UNC Researchers Successfully Remove PFAS Chemicals from Water

Working across disciplines, UNC-Chapel Hill environmental engineer Orlando Coronell and chemist Frank Leibfarth have developed a filtration resin that has thus far been successful in removing most PFAS from water.

PFAS, or per-and polyfluoroalkyl substances, are a family of over 5,000 chemicals. They are byproducts in the production of everyday items like Teflon, food packaging, stain-resistant fabrics, firefighting foam, and even makeup. Over the course of decades, these chemicals have made their way into drinking water sources around the world.

Although PFAS are used in the production of thousands of goods, their effects on human health are largely unknown. But, two types in particular, PFOA and PFOS, have been associated with a host of health complications including high cholesterol, thyroid disease, weakened immune system, and kidney and testicular cancer.

The NC PFAS Testing Network, established at UNC by the NC Policy Collaboratory, was born out of this public health concern. Since 2018, scientists from UNC-Chapel Hill, five other UNC system universities, and Duke University explore topics like private well contamination, atmospheric deposition, accumulation in the environment, human and animal health effects, and PFAS removal from water.

As of now, conventional filtration systems in water treatment plants and homes only remove a portion of total PFAS. In addition, many systems that can eliminate PFAS will do so only at the beginning of their lifetime. As the the part that removes contaminated particles — called the resin — breaks down, its efficacy diminishes. The deficiency in these technologies, according to Leibfarth, is that they weren’t made specifically for PFAS.

We looked at the chemical structure of PFAS and made a resin specifically for these molecules. I think this is really key, Leibfarth says.

The resin mimics PFAS by including fluorine in its structure, as well as charged ions to capture PFAS molecules, ultimately pulling them out of water.

The fluorous component draws it into the resin, and then the ionic component does ion exchange and makes it stick there, Leibfarth explains.

The team tested 21 PFAS that are commonly found in North Carolina, specifically from the Cape Fear River basin — a drinking water source for over 1.5 million people.

Initial testing showed they removed about 85 percent of all 21 PFAS, including 100 percent of PFOA and PFOS. The resin even absorbed 70 to 80 percent of short-chain PFAS, which have been particularly hard to remove from water.

More good news: The resin can be cleaned with a simple methanol solution and reused multiple times. Additionally, the device using this technology is not very different from what is currently used, so Coronell expects the barriers to move it from the lab to implementation will not be burdensome.

This technology could be used either in municipal drinking water plants or as an under-the-sink device in homes with private wells — an important fact, Coronell notes, because about 15 percent of Americans, or up to 50 million people, depend on private wells for drinking water. The resin could also potentially be used to treat wastewater or in diagnostic testing.

With their findings published in a peer-reviewed journal, and the resin patent protected, Coronell and Leibfarth are looking ahead to next steps, like ensuring the resin works in real-world scenarios.

Can we flow water over it at a high rate? How fast can we remove that PFAS? What kind of capacity does this resin really have? At what volume of water does our resin start to not work, and how often do we have to regenerate it? Leibfarth asks. All these things will go both into the efficacy of the material but also the economics of implementation.

If the team can secure enough funding, Leibfarth hopes this technology will be commercially implemented in the next five years. Getting it up and running as quickly and safely as possible is important, he says, because PFAS aren’t going away anytime soon.

Fluorinated compounds will continue to be made because consumers will continue to demand them, Leibfarth says. And it’s a problem that’s a product of our modern society, but we need modern solutions, then, to that problem.

Orlando Coronell is an associate professor in the Department of Environmental Sciences and Engineering within the UNC Gillings School of Global Public Health.

Frank Leibfarth is an assistant professor in the Department of Chemistry within the UNC College of Arts and Sciences.

Image of a multi-channel pipette.

Coronavirus Drug Shows Promise at UNC

UNC researchers are doing their part in the fight against the coronavirus that causes COVID-19. Ralph Baric, an epidemiologist in the Gillings School of Global Public health, heads a lab testing a broad spectrum antiviral drug called remdesivir.

UNC Leads Collaboration in PFAS Research

In 2016, a group of North Carolina researchers published evidence of high rates of PFAS in the Cape Fear River basin. Scientists from UNC-Chapel Hill, five other UNC system universities, and Duke University, have been researching these potentially dangerous chemicals found in drinking water sources across the state.

Future Technologies Could Blend Augmented Reality and Medicine

Computer scientist Henry Fuchs and his team of students and colleagues are developing a program using augmented-reality eyeglasses to aid in laparoscopic surgery training and, maybe one day, revolutionize minimally invasive surgery.

Helping Coastal Communities Cope with Sea-Level Rise

The sea creeps farther up the coastline every single day, and the distance between the top of the water and the bottom of bridges decreases — a major issue for port economies. UNC American studies professor Rachel Willis searches for solutions to help these communities cope.

Assessing Water Quality After a Hurricane Hits

In the months following one of the most destructive hurricanes of the past decade, UNC researchers had to act fast. Using a unique grant from the NSF, they’re testing water quality in Lumberton — one of the hardest-hit places during the storm.

Sand Dunes Offer Protection in Big Storms

North Carolina’s barrier islands are dynamic landforms in a state of constant change. UNC researchers want to better understand how those changes happen and what they mean for the future of our coast.

UNC Explores Sustainable Oyster Harvesting

What do you get when you combine new science with decades of knowledge from local fishermen? A lot of homegrown North Carolina oysters. A whole lot.