Cat Herding: Using Laser Pointers for the Environmental Enrichment and Behavioral Management of Laboratory Cats
By Heather Kirby, Environmental Enrichment Coordinator, Animal Resources Program, Wake Forest University School of Medicine

Cats can be a challenging species to house and manage. At our institution, cats are group housed whenever possible in pens containing multiple resting surfaces. While the space is adequate, there is little opportunity for exercise inside the pens. One of the problems we face is how to efficiently and safely shift cats from pens for routine cleaning and transport. Each day, our cat pens are cleaned before feedings, and the cats are given the opportunity to explore the housing room and visit neighboring cats. We believe this social time is enriching for the animals, but it has been difficult to train our cats to return to their pens. In general, many of our cats do not enjoy being picked up, and handling therefore has been a safety risk for our staff. Our goal was to devise a safe and time-efficient method of shifting cats between pens that did not require handling by our staff. Our solution was to employ a simple, Class 2 laser pointer as a fun target of sorts for the cats to chase and follow to locations.

Not only is this playtime enriching for our cats, which readily follow and chase the laser, but it is also fun for staff. Instead of relying on negative reinforcement to get cats to return to their pens, wherein cats return to their pens to avoid being picked up or chased back in by our staff, we now have a less stressful way to manage our cats’ behavior. Using the laser as a target allows cats to choose to return to their pens and provides a fun game for cats and staff each day.

This method has greatly reduced instances of handling-related injuries (scratches) and has also reduced the amount of time required to accomplish routine husbandry. Laser pointers have proven to be a valuable tool in the environmental enrichment and behavioral management of our cats. Safety note: This is likely common knowledge, but use caution in keeping laser pointers away from eyes.

Tech Tip: Identifying Mouse Genders in Neonates
By Amanda Ogden, RVT, RLATG, Rodent Breeding Colony Manager, Division of Laboratory Animal Medicine, UCLA

After several unsuccessful attempts to identify the gender of neonate mice, one of our investigators enlightened us regarding an anatomical feature that could be referenced instead of the routine anogenital distance for the determination of gender. The presence of a black dot at the midpoint of the anogenital divide signifies male gender, and the absence of this dot indicates female. This dot is visible to the naked eye as early as day 0 or 1. Applying this method to roughly 100 neonates, we have had a 100% success rate with black mice, and a 90% success rate with white mice. Sufficient numbers of agouti mouse neonates have not yet been observed to estimate a success rate for this method. This technique has proven to be extremely beneficial for researchers who need to discern gender ratios or who may require specific genders for projects.

The author wishes to thank Ling Hu and Jacqueline Pleitez for their technical assistance and Jerry Werk for her editorial advice.